Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2868-2876, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179989

RESUMO

Coating electrode materials with metal oxide thin films can improve the performance of electrocatalysts and charge storage materials. Atomic layer deposition (ALD) enables the deposition of conformal, uniform films on a wide range of electrodes; however, an even film depends on the availability of nucleation sites directly on the electrode surface. Here, we show that the electrochemical oxidation of glassy carbon electrodes prior to the deposition of alumina thin films by ALD leads to more uniform electrochemically passivating films. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) demonstrate that film uniformity increases with the increasing potential of preoxidation until 2.50 V versus Ag/AgCl, at which point the films are fully passivating and appear continuous by SEM. Further increasing the potential of preoxidation leads to uniform but less consistently passivating alumina films. These findings show that electrochemical preoxidation is a rapid and readily tunable strategy for controlling oxygenic nucleation sites and therefore the growth of thin metal oxide films on glassy carbon electrodes.

2.
Phys Chem Chem Phys ; 24(42): 26102-26110, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36274571

RESUMO

Nucleation and crystallization arising from liquid to solid phase are involved in a multitude of processes in fields ranging from materials science to biology. Controlling the thermodynamics and kinetics of growth is advantageous to help tune the formation of complex morphologies. Here, we harness wide-angle X-ray scattering and vibrational spectroscopy to elucidate the mechanism for crystallization and growth of the metal-organic framework Co-MOF-74 within microscopic volumes enclosed in a capillary and an attenuated total reflection microchip reactor. The experiments reveal molecular and structural details of the growth processes, while the results of plane wave density functional calculations allow identification of lattice and linker modes in the formed crystals. Synthesis of the metal-organic framework with microscopic volumes leads to monodisperse and micron-sized crystals, in contrast to those typically observed under bulk reaction conditions. Reduction in the volume of reagents within the microchip reactor was found to accelerate the reaction rate. The coupling of spectroscopy with scattering to probe reactions in microscopic volumes promises to be a useful tool in the synthetic chemist's kit to understand chemical bonding and has potential in designing complex materials.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Raios X , Cristalização , Termodinâmica , Espectroscopia de Ressonância Magnética
3.
J Am Chem Soc ; 143(13): 5044-5052, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33783205

RESUMO

Significant advances have been made in the synthesis of chemically selective environments within metal-organic frameworks, yet materials development and industrial implementation have been hindered by the inability to predictively control crystallite size and shape. One common strategy to control crystal growth is the inclusion of coordination modulators, which are molecular species designed to compete with the linker for metal coordination during synthesis. However, these modulators can simultaneously alter the pH of the reaction solution, an effect that can also significantly influence crystal morphology. Herein, noncoordinating buffers are used to independently control reaction pH during metal-organic framework synthesis, enabling direct interrogation of the role of the coordinating species on crystal growth. We demonstrate the efficacy of this strategy in the synthesis of low-dispersity single-crystals of the framework Co2(dobdc) (dobdc4-= 2,5-dioxido-1,4-benzenedicarboxylate) in a pH 7-buffered solution using cobalt(II) acetate as the metal source. Density functional theory calculations reveal that acetate competitively binds to Co during crystallization, and by using a series of cobalt(II) salts with carboxylate anions of varying coordination strength, it is possible to control crystal growth along the c-direction. Finally, we use zero length column chromatography to show that crystal morphology has a direct impact on guest diffusional path length for the industrially important hydrocarbon m-xylene. Together, these results provide molecular-level insight into the use of modulators in governing crystallite morphology and a powerful strategy for the control of molecular diffusion rates within metal-organic frameworks.

4.
J Am Chem Soc ; 142(49): 20855-20864, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33231443

RESUMO

Interfacial proton-coupled electron transfer (PCET) reactions are central to the operation of a wide array of energy conversion technologies, but molecular-level insights into interfacial PCET are limited. At carbon surfaces, designer sites for interfacial PCET can be incorporated by conjugating organic acid functional groups to graphite edges though aromatic phenazine linkages. At these graphite-conjugated catalysts (GCCs) bearing organic acid moieties, PCET is driven by complex interfacial electrostatic and field gradients that are difficult to probe experimentally. Herein, the spatially inhomogeneous interfacial electrostatic potentials and electric fields of GCC organic acids are computed as functions of applied potential. The calculated proton-coupled redox potentials for the PCET reactions at the GCC phenazine bridges and organic acid sites are in agreement with cyclic voltammetry measurements for a series of GCC acids. The trends in these redox potentials are explained in terms of the acidity of the molecular analogues and continuous conjugation between the acid and the graphite surface. The calculations illustrate that this conjugation is interrupted in a GCC acetic acid system, providing an explanation for the absence of a cyclic voltammetry peak corresponding to PCET at this acid site. This combined theoretical and experimental study demonstrates the critical role of continuous conjugation and strong electronic coupling between the GCC acid site and the graphite to enable interfacial field-driven PCET at the acid site. Understanding the connection between the atomic structure of the surface and the interfacial electrostatic potentials and fields that govern PCET thermochemistry may guide heterogeneous catalyst design.


Assuntos
Ácidos Carboxílicos/química , Grafite/química , Catálise , Transporte de Elétrons , Oxirredução , Prótons , Eletricidade Estática , Termodinâmica
5.
Acc Chem Res ; 52(12): 3432-3441, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31714746

RESUMO

The efficient interconversion of electrical and chemical energy requires catalysts capable of accelerating multielectron reactions at or near electrified interfaces. These reactions can be performed at metallic surface sites on heterogeneous electrocatalysts or through redox mediation at molecular electrocatalysts. The relative ease of synthesis and characterization for homogeneous catalysts has allowed for molecular-level control over the active site and permitted systematic tuning of activity and selectivity. Similar control is difficult to achieve with heterogeneous electrocatalysts, because they typically exhibit a distribution of active site geometries and local electronic structures, which are challenging to modify with molecular precision. However, metallic heterogeneous electrocatalysts benefit from a continuum of electronic states that distribute the redox burden of multielectron transformations, enabling more efficient catalysis. We envisioned that we could combine the attractive properties of molecular and heterogeneous catalysts by integrating tunable molecular active sites into the delocalized band states of a conductive solid. The Surendranath group has developed a class of electrocatalysts in which molecules are strongly electronically coupled to graphitic electrodes through a conductive, aromatic pyrazine linkage such that they behave like metallic surface active sites. In this Account, we discuss the dual role of these graphite-conjugated catalysts (GCCs) as a platform with which to answer molecular-level questions of metallic active sites and as a tool with which to fundamentally alter the mechanism and enhance the performance of molecular active sites. We begin by describing the electrochemical and spectroscopic studies that demonstrated that GCC sites behave like metallic active sites rather than simply as redox mediators attached to electrode surfaces. We then discuss how electrochemical studies of a series of graphite-conjugated acids enabled the construction of a molecular model for the thermochemistry of proton-coupled electron transfer reactions at GCC sites based on the pKa of the molecular analogue of the conjugated site and the potential of zero free charge of the electrode. In the final section, we discuss the effects of graphite conjugation on the mechanism and rate of oxygen reduction, hydrogen evolution, and carbon dioxide reduction catalysis across four different GCC platforms involving N-heterocycle, organometallic, and metalloporphyrin active sites. We discuss how molecular-level tuning at graphite-conjugated active sites directly correlates to changes in catalytic activity for the oxygen reduction reaction. We demonstrate that graphite-conjugated porphyrins show enhanced catalytic oxygen reduction activity over amide-linked porphyrins. Lastly, we describe how catalysis at graphite-conjugated sites proceeds through mechanisms involving concerted electron transfer and substrate activation, in stark contrast to the mechanisms observed for molecular analogues. Overall, we showcase how GCCs provide a rich platform for controlling heterogeneous catalysis at the molecular level.

6.
J Am Chem Soc ; 141(36): 14160-14167, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353897

RESUMO

The efficient interconversion of electrical and chemical energy requires the intimate coupling of electrons and small-molecule substrates at catalyst active sites. In molecular electrocatalysis, the molecule acts as a redox mediator which typically undergoes oxidation or reduction in a separate step from substrate activation. These mediated pathways introduce a high-energy intermediate, cap the driving force for substrate activation at the reduction potential of the molecule, and impede access to high rates at low overpotentials. Here we show that electronically coupling a molecular hydrogen evolution catalyst to a graphitic electrode eliminates stepwise pathways and forces concerted electron transfer and proton binding. Electrochemical and X-ray absorption spectroscopy data establish that hydrogen evolution catalysis at the graphite-conjugated Rh molecule proceeds without first reducing the metal center. These results have broad implications for the molecular-level design of energy conversion catalysts.

7.
ACS Cent Sci ; 5(5): 831-841, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31139719

RESUMO

Proton-coupled electron-transfer (PCET) steps play a key role in energy conversion reactions. Molecular PCET reactions are well-described by "square schemes" in which the overall thermochemistry of the reaction is broken into its constituent proton-transfer and electron-transfer components. Although this description has been essential for understanding molecular PCET, no such framework exists for PCET reactions that take place at electrode surfaces. Herein, we develop a molecular square scheme framework for interfacial PCET by investigating the electrochemistry of molecularly well-defined acid/base sites conjugated to graphitic electrodes. Using cyclic voltammetry, we first demonstrate that, irrespective of the redox properties of the corresponding molecular analogue, proton transfer to graphite-conjugated acid/base sites is coupled to electron transfer. We then show that the thermochemistry of surface PCET events can be described by the pK a of the molecular analogue and the potential of zero free charge (zero-field reduction potential) of the electrode. This work provides a general framework for analyzing and predicting the thermochemistry of interfacial PCET reactions.

8.
Angew Chem Int Ed Engl ; 57(32): 10221-10225, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29920901

RESUMO

The dynamics of carbon monoxide on Cu surfaces was investigated during CO reduction, providing insight into the mechanism leading to the formation of hydrogen, methane, and ethylene, the three key products in the electrochemical reduction of CO2 . Reaction order experiments were conducted at low temperature in an ethanol medium affording high solubility and surface-affinity for carbon monoxide. Surprisingly, the methane production rate is suppressed by increasing the pressure of CO, whereas ethylene production remains largely unaffected. The data show that CH4 and H2 production are linked through a common H intermediate and that methane is formed through reactions among adsorbed H and CO, which are in direct competition with each other for surface sites. The data exclude the participation of solution species in rate-limiting steps, highlighting the importance of increasing surface recombination rates for efficient fuel synthesis.

9.
J Am Chem Soc ; 140(3): 1004-1010, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29216428

RESUMO

Glassy carbon electrodes were functionalized with redox-active moieties by condensation of o-phenylenediamine derivatives with o-quinone sites native to graphitic carbon surfaces. Electrochemical and spectroscopic investigations establish that these graphite-conjugated catalysts (GCCs) exhibit strong electronic coupling to the electrode, leading to electron transfer (ET) behavior that diverges fundamentally from that of solution-phase or surface-tethered analogues. We find that (1) ET is not observed between the electrode and a redox-active GCC moiety regardless of applied potential. (2) ET is observed at GCCs only if the interfacial reaction is ion-coupled. (3) Even when ET is observed, the oxidation state of a transition metal GCC site remains unchanged. From these observations, we construct a mechanistic model for GCC sites in which ET behavior is identical to that of catalytically active metal surfaces rather than to that of molecules in solution. These results suggest that GCCs provide a versatile platform for bridging molecular and heterogeneous electrocatalysis.


Assuntos
Grafite/química , Pirazinas/química , Rutênio/química , Benzoquinonas/química , Carbono/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Oxirredução , Fenilenodiaminas/química , Propriedades de Superfície
10.
Inorg Chem ; 56(18): 11050-11058, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28872846

RESUMO

We introduce a novel platform to mimic the coordination environment of carboxylate-bridged diiron proteins by tethering a small, dangling internal carboxylate, (CH2)nCOOH, to phenol-imine macrocyclic ligands (H3PIMICn). In the presence of an external bulky carboxylic acid (RCO2H), the ligands react with [Fe2(Mes)4] (Mes = 2,4,6-trimethylphenyl) to afford dinuclear [Fe2(PIMICn)(RCO2)(MeCN)] (n = 4-6) complexes. X-ray diffraction studies revealed structural similarities between these complexes and the reduced diiron active sites of proteins such as Class I ribonucleotide reductase (RNR) R2 and soluble methane monooxygenase hydroxylase. The number of CH2 units of the internal carboxylate arm controls the diiron core geometry, affecting in turn the anodic peak potential of the complexes. As functional synthetic models, these complexes facilitate the oxidation of C-H bonds in the presence of peroxides and oxo transfer from O2 to an internal phosphine moiety.

11.
J Am Chem Soc ; 138(9): 3228-34, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26862666

RESUMO

The effect of the proton donor on the kinetics of interfacial concerted proton-electron transfer (CPET) to polycrystalline Au was probed indirectly by studying the rate of hydrogen evolution from trialkylammonium donors with different steric profiles, but the same pKa. Detailed kinetic studies point to a mechanism for HER catalysis that involves rate-limiting CPET from the proton donor to the electrode surface, allowing this catalytic reaction to serve as a proxy for the rate of interfacial CPET. In acetonitrile electrolyte, triethylammonium (TEAH(+)) displays up to 20-fold faster CPET kinetics than diisopropylethylammonium (DIPEAH(+)) at all measured potentials. In aqueous electrolyte, this steric constraint is largely lifted, suggesting a key role for water in mediating interfacial CPET. In acetonitrile, TEAH(+) also displays a much larger transfer coefficient (ß = 0.7) than DIPEAH(+) (ß = 0.4), and TEAH(+) displays a potential-dependent H/D kinetic isotope effect that is not observed for DIPEAH(+). These results demonstrate that proton donor structure strongly impacts the free energy landscape for CPET to extended solid surfaces and highlight the crucial role of the proton donor in the kinetics of electrocatalytic energy conversion reactions.

12.
J Cataract Refract Surg ; 30(9): 1896-901, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15342052

RESUMO

PURPOSE: To evaluate the treatment of recalcitrant recurrent corneal erosions (RCE) with superficial keratectomy using the Amoils epithelial scrubber (AES). SETTING: Muncie Eye Center, Muncie, Indiana, USA. METHODS: This study was a retrospective consecutive case series comprising 23 patients (26 eyes) who had superficial keratectomy for RCE using the AES between September 1997 and May 2003 at a private tertiary-care center. The preoperative and postoperative best corrected visual acuities (BCVAs), slitlamp findings, and postoperative incidence of RCE were studied. RESULTS: During a mean telephone survey follow-up of 21.2 months +/- 20.5 (SD) (range 1.4 to 71.3 months), 20 patients (23 eyes, 88%) reported no further RCE symptoms. The BCVA improved or stayed the same in 25 eyes (96%). No significant complications were found. CONCLUSION: Superficial keratectomy using the AES appears to be safe and effective for treating recalcitrant RCE.


Assuntos
Doenças da Córnea/cirurgia , Desbridamento/métodos , Epitélio Corneano/cirurgia , Procedimentos Cirúrgicos Oftalmológicos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...